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Abstract

A simple and practical scheme for advection transport equation is presented. The scheme, namely piecewise rational
method (PRM)), is a variant of the existing piecewise parabolic method (PPM) of Colella and Woodward (1984). Instead
of the parabolic function, a rational function is used for the reconstruction. Making use of the convexity preserving
nature of the rational function enables us to obtain oscillation-less numerical solutions, but avoids the adjustments of
the cell-interface values to enforce the monotonicity in PPM. The PRM is very simple and computationally efficient.
Our numerical results show that PRM is competitive to the PPM in many aspects, such as numerical accuracy and
shape-preserving property.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A class of conservative schemes for the advection equation has been so far proposed following the pi-
oneering work of Godunov [5]. A Godunov type scheme computes the cell-integrated average values of a
prognostic variable by using a conservative finite difference method of flux form, or a finite volume method
as preferred by some researchers, and results in an exact conservation for the transported quantity. High
order Godunov schemes can be devised by reconstructing high order interpolations within each mesh cell.
Rather than the piecewise constant interpolation in the original Godunov scheme, a linear interpolation
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function and a parabolic polynomial were used in the MUSCL [11,12] and the piecewise parabolic method
(PPM) [4] schemes. Among the high resolution schemes, the MUSCL and the PPM have so far shared a
large popularity in various applications.

Basically, using a linear or higher order interpolation function for reconstruction tends to bring about
oscillations to the numerical solutions. To get rid of this, slope modifications and the adjustments of the
cell-interface values prove to be necessary. As a result, the piece-wisely constructed interpolation function is
not usually continuous cross the cell interfaces. This short note presents a variant to the existing PPM by
making use of a rational interpolation function. The resulting scheme, which is called piecewise rational
method (PRM), makes use of a rational function to reconstruct the sub-cell interpolation. Due to the
convexity preserving property of the rational function, the PRM scheme gives an oscillation-less solution
but does not need the adjustments for the cell-interface values. The performance of PRM is evaluated in
this note by numerical experiments.

The interpolation functions and the numerical formulation of PRM are described in Sections 2 and 3.
Numerical experiments with comparisons with the PPM scheme are given in Section 4. The paper is ended
with a few conclusion remarks in Section 5.

2. The interpolation reconstruction

Constructing a high order Godunov scheme begins with the reconstruction of the sub-cell interpolation
function from the given cell-average values for all computational cells. Provided a physical variable f(x) is

discretized over a 1D grid partition with each cell defined by [x; 1, x; +%] fori=0,1,...,imx, the cell-average
of f(x) is computed by i
_; = i dxa 1
fi=ge | AW (1)
)
with Ax; = x;1 —x; 1, and F; (x) being the piecewise interpolation function.

Given the cell- 1ntegrated averages f; and the cell interface values f;_, and f;,1, an interpolation function
with a freedom of three can be constructed over the ith cell [x, 1, x, ﬁ The cell-interface values, Sl for
i=0,1,..., inax, can be determined by either making use of an 1nterp01at10n approximation based on the
known cell -average values or treating the interface value as another prognostic variable which is memorized
and advanced at every time step. The latter results in a class of advection transport schemes called CIP-CSL
schemes [13,15,16]. In this brief note, we take the conventional way and compute the cell interface values by
an interpolation approximation which is only based on the cell average values. Being an example of such a
kind, a cubic polynomial can be derived from 4 cell averages and the resulting interpolated value at x;,; is

Jird = 5(fi + fir1) = H(fi1 + fir2) (2)

for a uniform grid.

It is well-known that any high order interpolation tends to create spurious oscillations in numerical
solutions. As a remedy for this, slope modifications were introduced in the MUSCL [11,12] and the PPM [4]
schemes. In this paper, we adopted the method of Colella and Woodward [4] for computing the interface
values as,

iy = 3+ fir) = 4(0fi = i), 3)

with df; being the average slope in cell [x X 1% +1] (see [4] for the expression over a non-uniform mesh). The
following approximation formula for the dverage slope was intensively discussed and used in the MUSCL
and the PPM schemes,

NI
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3t = { il b ol =G @), G 7)) >0 @

0, otherwise,

where 6f; = (fi11 — fi—1)/2. The positives a; and o, are parameters that control the average slope and affect
the dispersion errors of the numerical solutions. For the rational function based scheme discussed in this
note, we used oy = o, = 3.

With f;, f, 1 and f, ! known, we can uniquely construct the piecewise interpolation function Fj(x) by

using the follozwing constraint conditions

E(xif%) = f;'—%a (5)
E‘(xw%) :f;'+%a (6)
1 xi+% _

A parabolic function, as used in the PPM scheme, can be defined as

Fi(x) = P(x) = a; + bi(x — x;_1) + ci(x — xl-_%)2 for x € [x,_1,x; ] (8)

The interpolated profiles for a triangular pulse and a step jump are plotted in Fig. 1, the parabolic
function has produced significant overshots and undershots near the large gradients, which then appear as
the spurious oscillations in the numerical solutions. In order to get rid of the numerical oscillations, the
PPM scheme re-adjusts the interface value f;,, into f;;1 and f,.s for the use of two neighboring cells
(consult [4] for the details). The adjustment procedure for monotonicity is clearly illustrated in [2] (see Figs.
3-5 of [2] and the related discussions). A discontinuity or jump often occurs between f;; il and fp 11, es-
pecially in the vicinity of large gradient.

Instead of (8), we use a rational function in a form as,

a; + 2bi(x — x, 1) + Bibi(x —x, 1)’
F(x) =Ri(x) = 2 5 : for x € [x;_s,x;.4]- 9)
[+ Bilx— 50
Exact —— Exact —— . e

Cell average @ Cell average @
Parabolic

Parabolic -

Fig. 1. Reconstruction for a triangle peak (left) and a step jump (right) by a parabolic function.
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From (5)—(7), the rational function (9) can be uniquely determined, and the coefficients read

a; Zf,-f%, (10)
b= Bit 5 (i i) (1
B, = Ax;' lig;f; = 1]. (12)

Note that in case of (f; —f;%)(fi,% — f;) < 0, singularity may arise when 1 + f,(x — x, 1) approaches 0.

i—t

This is the case where a peak or a ravine is transported. A simple remedy can be devised by modifying f;

into
. [fin—fil + ¢
_ -1 2 _
B = Ax; [Iﬁf%lﬂ 1]7 (13)

with e being a small positive to avoid division by zero when f; — f; 1= 0. The small number € serves only to
avoid division by zero, thus it can be set as small as machine limit (for example, e = 1072,

Similar to those in [14,15], for any piece-wise interpolation function R;(x), it is easy to prove the fol-
lowing fact.

< fi < fiyr, while

1,
2

Proposition 1. Inequality d[Ri(x)]/dx >0 is always held within [x;_y,x..] for fi_
d[R;(x)]/dx <0 is always held within [x,_y,x; 1] for fi_y = [i = fij1.

Proposition 1 states that the rational function (9) does not change the convexity of the interpolated
profile within each mesh cell. Inequality (f; — f; +1)(]‘,-,% — f;) < 0 implies the exceptional case where a peak
or a valley is transported. The above conclusion does not apply in this case. However, our numerical results
show that the scheme tends to flatten a sharp corner rather than produce numerical wiggles.

Fig. 2 shows the interpolated profiles for a triangular wave and a step jump by the rational function. The
magnitude of the numerical oscillations is limited to the order of the small positive e, which is negligible in
practical applications.

3. The PRM scheme

We consider the advection transport equation in a conservation form as

of o,
a‘F@—x(uf)—Oa (14)

where ¢ refers to the time, x the spatial coordinate, u the characteristic speed and f the transported quantity.
A Godunov scheme can be cast into the following flux form,

af, _ (”f)z+% - (uf),_%
o Ax; ' (15)

Here f; denotes the cell-integrated average of the transported quantity, while (uf), v1and (uf), y the fluxes
across the cell boundaries. The resulting numerical formulation is then automatically conservative.
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Fig. 2. Reconstruction for a triangle peak (left) and a step jump (right) by a rational function.

To get a high order scheme, the numerical flux is usually computed based on an interpolation which is
more accurate than the piece-wisely constant approximation, e.g. the linear function in the MUSCL [11,12]
and the parabolic function in the PPM [4].

Given the cell-integrated averages f” at time step n, we first compute the cell interface values S}, ac-
cording to (3) for all mesh cells. The rational function (9) is then constructed in terms of f7, fl_"l and f

Remember that any interpolation function over [x;_j,x; +_] can be expressed equivalently by two con-

. . 2
structions based on either x; 1 or, x,1 as

af + 257 (v —x, ) + Bb (= x,1)
R/ (x) ~+2 3 2 for x € [xi_%,xi+%], (16)
[1 + ﬁl ()C 7‘x1—%)] B
or
a; +2b7 (x —x;1) + B, b7 (x — x; 2
R (x) = — ( ) A i) for x € [x;_y,x;1]. (17)

l [1+ ﬁi (x — xi%)]z

For easier coding, we can choose R or R~ according to the upwind direction. Let y/ =1 + Bfoi, the
coefficients of R (x) can be immediately obtained as

b+: 1 ('))ffn*f-nl) (19)

i Ax,- iJi i—3/?

Y A AR

R (20)
|f; - i+%|+€

The coefficients of R; (x), denoted as ,8, , Vi, a; and b7 can be found by just permuting f ", and /7, and
replacing Ax; with —Ax; in the corresponding expressions for R} (x). ’
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After all the pieces of the interpolation function R;(x) are determined, the cell-integrated average f; is
updated by the flux formulation

T = 1 = (g — g0)/Ax, (1)

i—3
where g; 41 represents the flux of f across boundary x = x; "l during /"*! — " and is computed as
,n+l

8irl = {min(0, ”i+%)Ri++1 [XH-% - ”i+%(t — 1")] — max(0, ui+%)Ri_ [xH—% - ”i+%(t — ")]}de. (22)

m

Using (16) or (17), we have

+ bt & - b &
_al+1§_|:+l+1§ , fOI' ui+% < 07 az é+~_z 6
1+ ﬁi+1 i} 1+ B¢
n+1
where & = [ u(f),,, dr.
From the convexity preserving property discussed in the above section, we have straightforwardly the
following statement.

1=
g1+7

, for Uil > 0, (23)

Proposition 2. For the uniform advection velocity, the PRM scheme does not create any new extremum if the
conditions of Proposition 1 are satisfied.

The conditions of Proposition 1 is enforced in the scheme by modifying the f" as,
J_(;‘n = max Uf;v’ mln(f;n,%af;i%)} and j;‘” = min[fz’n> max(}”i’i%, ,1%)] (24)

before computing the interpolation function. It should be noted that above modification to f” is only used
for constructing the interpolation function (16) or (17). Thus, transport is still exactly conservative.

In PRM, once the cell interface value is determined, only (18)—(20), (23) and (24) need to be computed to
get the flux. The adjustment of the interface value to enforce the monotonicity is not required here. The
corresponding part in the PPM consists of (1.5), (1.10) and one of (1.12) in [4]. A direct comparison of
computational efficiency between PRM and PPM can be carried out by counting the numerical operations
of those parts where two schemes are different from each other. Table 1 shows the numbers of computer
operations required in the corresponding parts in both schemes. It is easy to see that PRM requires less
operation counts than PPM. However, we should also note that the operation of division is relatively
heavier compared with other arithmetic operations, so a comparison in terms of CPU time is dependent on
the hardware and compiler. The PRM should be faster on any architecture equipped with advanced
division pipelines.

Table 1

Operation counts of the different parts of PRM and PPM
Operation PRM PPM
=, +, —, x, ABS(x) 21 43
= 2 0
MAX(x) or min(x) 4 0
IF logic 0 3

Total 27 46
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The multi-dimensional computation of PRM scheme can be implemented as those applied to
the PPM scheme [2,7]. We have adopted the dimensional splitting to extend the scheme to multi-
dimensions. For a variable velocity field, the solution from a simple splitting can not be monotonic
even the velocity field is multi-dimensionally divergence free. Extra modifications [3,6,7] are required to
correct these splitting errors. The splitting correction suggested by Clappier [3] is used in our multi-
dimensional calculations.

4. Numerical tests

In order to evaluate the numerical results in a quantitative way, we use an /, norm error Etor as defined
in [10],

ETOT _ Z(f feXdCt (25)

where N is the number of the sampled mesh cells.
It is easy to know that the total error can be further divided into the dissipation error and the dispersion
error,

Etor = Episs + Episp, (26)
with

Episs = [O-(J_m) - UU'exact)}Z + (1" _fexact>2

and
Episp = 2(1 — r)a(f")o (/)

being the dissipation error and the dispersion error respectively. In the above expressions, /;m and a(f™)
represent the mean and the standard deviation of f” respectively, and r is the correlation coefficient between
the values of /" and f**** on the mesh cells.

4.1. Comparison with PPM

We firstly examined the grid refinement convergence rate of the PRM scheme. Sine waves with wave
lengths of 20Ax and 40Ax were computed. A constant velocity u = 1.0 was set throughout the computa-
tional domain. Fig. 3 displays the numerical results after 1000 steps with a Courant number 0.2. The results
of the PPM scheme are also included for comparison. For the long wave, the PRM produces quite similar
results to the PPM method. For the short wave, however, the PRM scheme gives better solution than PPM.

Numerical errors are calculated from the data sampled over 80 grid points and given in Table 2. In order
to evaluate the accuracy and convergence rates of both schemes, we include the numerical results for a long
wave of 80Ax as well. The PRM scheme produces less errors for all wave lengths compared to PPM. The
convergence rates of PRM and PPM are shown in Table 3. Higher than 2nd order convergence rates are
observed for both schemes.

The transport of a triangle wave given initially as

x|

others
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L=20DX

L L L L 1 L L L

Fig. 3. Sine waves of the wave lengths being 20 (top) and 40 (bottom) grid-spacings transported after 1000 step calculations with the

20

30 40 50 60 70 80 0 5 10 15 20

Courant number being 0.2. Displayed are the overall solutions (left) and the enlarged parts over half wave length (right).

Table 2

Grid refinement tests
Scheme ETOT(ZOA}C) ETOT(4OAX) ETOT(SOAX)
PRM 5.36 x 1073 222 %1074 7.06 x 106
PPM 7.96 x 1073 3.22x 1074 1.03x 1073

Displayed are the errors defined by Eror = & So1 (/" — femaet)?,

Table 3
Convergence rates of different schemes
Scheme {Em <20Ax>} 172 Order |:ET0T(40AX)} 172 Order
Etot (40Ax) Etot (80Ax)
PRM 491 2.30 5.61 2.49
PPM 4.97 2.31 5.59 2.48
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is computed to test numerical dispersion and shape preserving properties of the schemes. An equally spaced
grid with Ax = 0.01 is used.

It is known that the numerical dispersion of high order schemes of flux form depends on the CFL
number. We conducted numerical experiments for PRM and PPM with the CFL numbers of 0.02, 0.5 and
0.98. For the same transport distance, the number of steps are 10,000, 400 and 204 correspondingly. The
numerical results of PPM and PRM are plotted in Fig. 4, and the deviations from the exact solution are
shown in Fig. 5. When Courant number is 0.5, both schemes give spatially symmetric errors, thus there are
not noticeable distortions to the symmetry of the initial profile. But for Courant number 0.02, PPM
produces quite different errors for up-wind side and down-wind side of the triangle, and a significant
distortion is observed on the down-wind side of the triangle from the results of PPM. The PRM, however,

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Fig. 4. A triangular wave transported by the PPM scheme (left) and PRM scheme (right) with the Courant number being 0.02, 0.5 and
0.98, respectively.

' ' ' CFL=0.02 -
CFL=0.50 -
0.05 1 0.05 CFL=0.98 1
0 [ 1 0
-0.05 | Yoo 1 005}
3§
i
0.1 | i 1 0.1 | :
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Fig. 5. The errors by (f — ') for the triangular wave transported by the PPM scheme (left) and PRM scheme (right) with Courant
number being 0.02, 0.5 and 0.98, respectively.



398 F. Xiao, X. Peng | Journal of Computational Physics 198 (2004) 389-402

Table 4

Numerical errors of a triangular linear wave computed by the PPM scheme
CFL no./steps Eror Episs Episs/Eror (%) Episp Epise/Eror (%)
0.50/400 2.75x 1074 1.01 x 10-¢ 0.37 2.74 x 107* 99.63
0.02/10000 5.06x 1074 1.05x10°° <0.01 5.06 x 1074 >99.99
0.98/204 7.44 x 1073 8.79 x 10~ <0.01 7.44 x 1073 >99.99

The data were sampled over 70 grid cells centered by the peak of the triangle with the CFL numbers being 0.5, 0.02 and 0.98,
respectively.

Table 5

Same as Table 4, but computed by the PRM scheme
CFL no./steps Ertor Episs Episs/Eror (%) Episp Episp/Eror (V)
0.50/400 2.64 x 10~ 1.90 x 10-° 0.76 2.62x 107 99.24
0.02/10000 224 %104 7.36 x 1077 0.45 223 x 1074 99.55
0.98/204 6.17 x 1073 6.05x107° <0.01 6.17 x 1073 >99.99

preserves the symmetry much better. Tables 4 and 5 show the numerical errors for different Courant
numbers. In all cases the PRM scheme is more accurate than the PPM scheme in terms of the total nu-
merical errors and the dispersion errors. PPM appears less accurate in dispersion as the Courant number
departs from 0.5. It should be also noted that the PPM clips the triangular peak to a more significant extent,
which is also observed in the sine wave tests.

To examine the capability of capturing discontinuities, the transport of a square wave is computed. The
initial profile is defined as

0 _ 17 |x|<0157
fx) = {0 others.

The computed results after 1000 steps with Courant number being 0.2 are plotted in Fig. 6. PRM
produced almost the same numerical solution to the PPM and were able to bound the minimum values to

(28)

)

PPM -
1 = PRM
5 Exact —
08} i 1
! H
06
0.4 . |
.f 'x
i 1
02t j i
i }
i
0 /

0 10 20 30 40 50 60 70

Fig. 6. Transport of a square wave with a constant velocity field.
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Table 6

Square wave transportation problem
Scheme RFM RSM MAX MIN Eror
PRM 1.0 0.937 1.0 O(e) 1.12x 1072
PPM 1.0 0.944 1.0 0.0 1.02x 1072

MAX and MIN indicate the highest and the lowest values produced by the schemes. Other quantities are defined as
RFM = [ f(¢)/ [ f(0) and RSM = [ f2(¢)/ [ f*(0). The data are sampled over 70 mesh cells.

an order of ¢, the small positive used in (20). The conservations in the total mass and the total squared mass,
the maximum and the minimum of the numerical solutions, and the [/, errors are shown in Table 6. The
numerical manipulations to enforce the monotonicity in the PPM scheme always tends to clip a ‘peak’ to a
‘platean’, and gives a better result to this particular test problem.

As the test of the 2D scheme, we solved the solid rotation test problems. The advection transport
equation in 2D was computed on a [0,1] x [0,1] square with a 100 x 100 grid. A purely rotational velocity
field with period 1 is specified as

e =26(s 1), e 2(s-1).

Fig. 7 shows a cone after one revolution. The cone is initially centered at (},3) with the base radius of
0.15 and the height of 1. The PRM gives a numerical solution competitive to the PPM with respect to shape
preserving. Another test is conducted by using the initial profile of the cut-cylinder of Zalesak [17]. Shown
in Fig. §, the PRM again produced a numerical result among the best ones of this kind.

4.2. Smolarkiewicz’s deformational advection test

We also repeated the test suggested in Smolarkiewicz [8] and Staniforth et al. [9] to transport a cone with
a deformed flow field

8n . .
u(x,y):z—gmn(%)sm(%), (29)
v(x,y):%cos(%)cos(g—?). (30)
) RN ) RN

ol JN oo SN
0.7+ /;’ l"" "“\\\\ 0.7r /’/”””"’"”.‘z&t\\k\

o] TSN of (OO0
04 / \ 04r AN
AN ool

Fig. 7. Numerical solution after 1 revolution of the solid rotation test of a cone by PRM (left) and PPM (right).
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O

\
\\\\\\\\\\‘

L

0.8 ~/// I ‘\\\\ \\\\‘/""'" &“‘\\ 0.8 ,.'////".\\ \,y‘i," V“‘\ \
o W&\\MWM o WWW&W\
) AARORES NN Q8

Fig. 8. Numerical solution after 1 revolution of the solid rotation test of a cut cylinder of Zalesak [17] by PRM (left) and PPM (right).

Corresponding to Bott [1], the numerical results at 7 = 19Az, 38At, 57At and 75A¢ with At = 0.7 are
plotted in Fig. 9. Our results agree with the analytical solution presented in Staniforth et al. [9] in terms of
the overall shape and the phase of deformation. The symmetry of the solution is accurately reproduced.

19 steps 38 steps

57 steps

Fig. 9. Numerical results of the deformational flow field test for short time integrations computed by PRM.
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3768 steps

COO000000
oLhwrON®

Fig. 10. Same as Fig. 9 but after 3768 steps.

However, same as any other stable scheme, PRM smeared the structures of thin film due to the finite
resolution of computational mesh. Fig. 10 shows the computed result after 3768 steps with PRM scheme.
As pointed out by Staniforth et al. [9] and Smolarkiewicz [8], the un-resolvable structure will develop as the
time increases. But it is still meaningful to run a long time integration to see if the un-resolvable scales will
cause computational instability for a scheme that works well with resolvable structures. The PRM has not
encountered any computational instability even after a long integration time. The ratio of the second
moment after 3768 steps to its initial value, (/%) y6sieps/ 2o inigiars 1 0.299, Which shows a dissipative
property. The main feature that the concentration tends to move around the vortex centers after a long time
integration was captured.

5. Conclusions

We have presented the PRM scheme as a conservative and oscillation-less advection scheme. The PRM
is algorithmically simple and easy to code. Our numerical experiments show that the PRM is a competitive
alternative to the PPM scheme with respect to numerical accuracy and computational efficiency. We can
expect more applications of the PRM scheme to a wide range of CFD simulations.
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