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Abstract

A simple and practical scheme for advection transport equation is presented. The scheme, namely piecewise rational

method (PRM), is a variant of the existing piecewise parabolic method (PPM) of Colella and Woodward (1984). Instead

of the parabolic function, a rational function is used for the reconstruction. Making use of the convexity preserving

nature of the rational function enables us to obtain oscillation-less numerical solutions, but avoids the adjustments of

the cell-interface values to enforce the monotonicity in PPM. The PRM is very simple and computationally efficient.

Our numerical results show that PRM is competitive to the PPM in many aspects, such as numerical accuracy and

shape-preserving property.
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1. Introduction

A class of conservative schemes for the advection equation has been so far proposed following the pi-

oneering work of Godunov [5]. A Godunov type scheme computes the cell-integrated average values of a
prognostic variable by using a conservative finite difference method of flux form, or a finite volume method

as preferred by some researchers, and results in an exact conservation for the transported quantity. High

order Godunov schemes can be devised by reconstructing high order interpolations within each mesh cell.

Rather than the piecewise constant interpolation in the original Godunov scheme, a linear interpolation
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function and a parabolic polynomial were used in the MUSCL [11,12] and the piecewise parabolic method

(PPM) [4] schemes. Among the high resolution schemes, the MUSCL and the PPM have so far shared a

large popularity in various applications.
Basically, using a linear or higher order interpolation function for reconstruction tends to bring about

oscillations to the numerical solutions. To get rid of this, slope modifications and the adjustments of the

cell-interface values prove to be necessary. As a result, the piece-wisely constructed interpolation function is

not usually continuous cross the cell interfaces. This short note presents a variant to the existing PPM by

making use of a rational interpolation function. The resulting scheme, which is called piecewise rational

method (PRM), makes use of a rational function to reconstruct the sub-cell interpolation. Due to the

convexity preserving property of the rational function, the PRM scheme gives an oscillation-less solution

but does not need the adjustments for the cell-interface values. The performance of PRM is evaluated in
this note by numerical experiments.

The interpolation functions and the numerical formulation of PRM are described in Sections 2 and 3.

Numerical experiments with comparisons with the PPM scheme are given in Section 4. The paper is ended

with a few conclusion remarks in Section 5.
2. The interpolation reconstruction

Constructing a high order Godunov scheme begins with the reconstruction of the sub-cell interpolation

function from the given cell-average values for all computational cells. Provided a physical variable f ðxÞ is
discretized over a 1D grid partition with each cell defined by ½xi�1

2
; xiþ1

2
� for i ¼ 0; 1; . . . ; imax, the cell-average

of f ðxÞ is computed by

�fi ¼
1

Dxi

Z x
iþ1

2

x
i�1

2

FiðxÞdx; ð1Þ

with Dxi ¼ xiþ1
2
� xi�1

2
, and FiðxÞ being the piecewise interpolation function.

Given the cell-integrated averages �fi and the cell interface values fi�1
2
and fiþ1

2
, an interpolation function

with a freedom of three can be constructed over the ith cell ½xi�1
2
; xiþ1

2
�. The cell-interface values, f n

i�1
2

for

i ¼ 0; 1; . . . ; imax, can be determined by either making use of an interpolation approximation based on the

known cell-average values or treating the interface value as another prognostic variable which is memorized

and advanced at every time step. The latter results in a class of advection transport schemes called CIP-CSL

schemes [13,15,16]. In this brief note, we take the conventional way and compute the cell interface values by

an interpolation approximation which is only based on the cell average values. Being an example of such a

kind, a cubic polynomial can be derived from 4 cell averages and the resulting interpolated value at xiþ1
2
is

fiþ1
2
¼ 7

12
ð�fi þ �fiþ1Þ � 1

12
ð�fi�1 þ �fiþ2Þ ð2Þ

for a uniform grid.

It is well-known that any high order interpolation tends to create spurious oscillations in numerical

solutions. As a remedy for this, slope modifications were introduced in the MUSCL [11,12] and the PPM [4]
schemes. In this paper, we adopted the method of Colella and Woodward [4] for computing the interface

values as,

fiþ1
2
¼ 1

2
ð�fi þ �fiþ1Þ � 1

6
ð�dfi � �dfi�1Þ; ð3Þ

with �dfi being the average slope in cell ½xi�1
2
; xiþ1

2
� (see [4] for the expression over a non-uniform mesh). The

following approximation formula for the average slope was intensively discussed and used in the MUSCL

and the PPM schemes,
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�dfi ¼ minðjdfij; a1j�fiþ1 � �fij; a2j�fi � �fi�1jÞsgnðdfiÞ; if ð�fiþ1 � �fiÞð�fi � �fi�1Þ > 0;
0; otherwise;

�
ð4Þ

where dfi ¼ ð�fiþ1 � �fi�1Þ=2. The positives a1 and a2 are parameters that control the average slope and affect

the dispersion errors of the numerical solutions. For the rational function based scheme discussed in this

note, we used a1 ¼ a2 ¼ 3.

With �fi, fi�1
2
and fiþ1

2
known, we can uniquely construct the piecewise interpolation function FiðxÞ by

using the following constraint conditions

Fiðxi�1
2
Þ ¼ fi�1

2
; ð5Þ
Fiðxiþ1
2
Þ ¼ fiþ1

2
; ð6Þ
1

Dxi

Z x
iþ1

2

x
i�1

2

FiðxÞdx ¼ �fi: ð7Þ

A parabolic function, as used in the PPM scheme, can be defined as

FiðxÞ � PiðxÞ ¼ ai þ biðx� xi�1
2
Þ þ ciðx� xi�1

2
Þ2 for x 2 ½xi�1

2
; xiþ1

2
�: ð8Þ

The interpolated profiles for a triangular pulse and a step jump are plotted in Fig. 1, the parabolic

function has produced significant overshots and undershots near the large gradients, which then appear as
the spurious oscillations in the numerical solutions. In order to get rid of the numerical oscillations, the

PPM scheme re-adjusts the interface value fiþ1
2
into fLiþ1

2
and fRiþ1

2
for the use of two neighboring cells

(consult [4] for the details). The adjustment procedure for monotonicity is clearly illustrated in [2] (see Figs.

3–5 of [2] and the related discussions). A discontinuity or jump often occurs between fLiþ1
2
and fRiþ1

2
, es-

pecially in the vicinity of large gradient.

Instead of (8), we use a rational function in a form as,

FiðxÞ � RiðxÞ ¼
ai þ 2biðx� xi�1

2
Þ þ bibiðx� xi�1

2
Þ2

½1þ biðx� xi�1
2
Þ�2

for x 2 ½xi�1
2
; xiþ1

2
�: ð9Þ
Exact
 Cell average

Parabolic

Exact
 Cell average

Parabolic

Fig. 1. Reconstruction for a triangle peak (left) and a step jump (right) by a parabolic function.
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From (5)–(7), the rational function (9) can be uniquely determined, and the coefficients read

ai ¼ fi�1
2
; ð10Þ
bi ¼ bi
�fi þ

1

Dxi
ð�fi � fi�1

2
Þ; ð11Þ
bi ¼ Dx�1
i

ðfi�1
2
� �fiÞ

ð�fi � fiþ1
2
Þ

"
� 1

#
: ð12Þ

Note that in case of ð�fi � fiþ1
2
Þðfi�1

2
� �fiÞ < 0, singularity may arise when 1þ biðx� xi�1

2
Þ approaches 0.

This is the case where a peak or a ravine is transported. A simple remedy can be devised by modifying bi

into

~bi ¼ Dx�1
i

jfi�1
2
� �fij þ �

j�fi � fiþ1
2
j þ �

"
� 1

#
; ð13Þ

with � being a small positive to avoid division by zero when �fi � fiþ1
2
¼ 0. The small number � serves only to

avoid division by zero, thus it can be set as small as machine limit (for example, � ¼ 10�20).

Similar to those in [14,15], for any piece-wise interpolation function RiðxÞ, it is easy to prove the fol-
lowing fact.

Proposition 1. Inequality d½RiðxÞ�=dxP 0 is always held within ½xi�1
2
; xiþ1

2
� for fi�1

2
6 �fi 6 fiþ1

2
, while

d½RiðxÞ�=dx6 0 is always held within ½xi�1
2
; xiþ1

2
� for fi�1

2
P �fi P fiþ1

2
.

Proposition 1 states that the rational function (9) does not change the convexity of the interpolated

profile within each mesh cell. Inequality ð�fi � fiþ1
2
Þðfi�1

2
� �fiÞ < 0 implies the exceptional case where a peak

or a valley is transported. The above conclusion does not apply in this case. However, our numerical results

show that the scheme tends to flatten a sharp corner rather than produce numerical wiggles.
Fig. 2 shows the interpolated profiles for a triangular wave and a step jump by the rational function. The

magnitude of the numerical oscillations is limited to the order of the small positive �, which is negligible in

practical applications.
3. The PRM scheme

We consider the advection transport equation in a conservation form as

of
ot

þ o

ox
ðuf Þ ¼ 0; ð14Þ

where t refers to the time, x the spatial coordinate, u the characteristic speed and f the transported quantity.

A Godunov scheme can be cast into the following flux form,

o�fi
ot

¼ �
ðuf Þiþ1

2
� ðuf Þi�1

2

Dxi
: ð15Þ

Here �fi denotes the cell-integrated average of the transported quantity, while ðuf Þiþ1
2
and ðuf Þi�1

2
the fluxes

across the cell boundaries. The resulting numerical formulation is then automatically conservative.
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Fig. 2. Reconstruction for a triangle peak (left) and a step jump (right) by a rational function.
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To get a high order scheme, the numerical flux is usually computed based on an interpolation which is

more accurate than the piece-wisely constant approximation, e.g. the linear function in the MUSCL [11,12]
and the parabolic function in the PPM [4].

Given the cell-integrated averages �f n
i at time step n, we first compute the cell interface values f n

iþ1
2

ac-

cording to (3) for all mesh cells. The rational function (9) is then constructed in terms of �f n
i , f

n
i�1

2

and f n
iþ1

2

.

Remember that any interpolation function over ½xi�1
2
; xiþ1

2
� can be expressed equivalently by two con-

structions based on either xi�1
2
or, xiþ1

2
as

Rþ
i ðxÞ ¼

aþi þ 2bþi ðx� xi�1
2
Þ þ ~bþ

i b
þ
i ðx� xi�1

2
Þ2

½1þ ~bþ
i ðx� xi�1

2
Þ�2

for x 2 ½xi�1
2
; xiþ1

2
�; ð16Þ

or

R�
i ðxÞ ¼

a�i þ 2b�i ðx� xiþ1
2
Þ þ ~b�

i b
�
i ðx� xiþ1

2
Þ2

½1þ ~b�
i ðx� xiþ1

2
Þ�2

for x 2 ½xi�1
2
; xiþ1

2
�: ð17Þ

For easier coding, we can choose Rþ or R� according to the upwind direction. Let cþi ¼ 1þ ~bþ
i Dxi, the

coefficients of Rþ
i ðxÞ can be immediately obtained as
aþi ¼ f n
i�1

2
; ð18Þ
bþi ¼ 1

Dxi
ðcþi �f n

i � f n
i�1

2
Þ; ð19Þ
~bþ
i ¼ Dx�1

i

jf n
i�1

2

� �f n
i j þ �

j�f n
i � f n

iþ1
2

j þ �

0
@ � 1

1
A: ð20Þ

The coefficients of R�
i ðxÞ, denoted as ~b�

i , c
�
i , a

�
i and b�i can be found by just permuting f n

i�1
2

and f n
iþ1

2

and

replacing Dxi with �Dxi in the corresponding expressions for Rþ
i ðxÞ.
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After all the pieces of the interpolation function RiðxÞ are determined, the cell-integrated average �fi is
updated by the flux formulation

�f nþ1
i ¼ �f n

i � ðgiþ1
2
� gi�1

2
Þ=Dxi; ð21Þ

where giþ1
2
represents the flux of f across boundary x ¼ xiþ1

2
during tnþ1 � tn and is computed as

giþ1
2
¼

Z tnþ1

tn
fminð0; uiþ1

2
ÞRþ

iþ1½xiþ1
2
� uiþ1

2
ðt � tnÞ� �maxð0; uiþ1

2
ÞR�

i ½xiþ1
2
� uiþ1

2
ðt � tnÞ�gdt: ð22Þ

Using (16) or (17), we have

giþ1
2
¼ � aþiþ1nþ bþiþ1n

2

1þ ~bþ
iþ1n

; for uiþ1
2
< 0;

a�i nþ b�i n
2

1þ ~b�
i n

; for uiþ1
2
> 0; ð23Þ

where n ¼
R tnþ1

tn uðtÞiþ1
2
dt.

From the convexity preserving property discussed in the above section, we have straightforwardly the
following statement.

Proposition 2. For the uniform advection velocity, the PRM scheme does not create any new extremum if the

conditions of Proposition 1 are satisfied.

The conditions of Proposition 1 is enforced in the scheme by modifying the �f n
i as,

�f n
i ¼ max½�f n

i ;minðf n
i�1

2
; f n

iþ1
2
Þ� and �f n

i ¼ min½�f n
i ;maxðf n

i�1
2
; f n

iþ1
2
Þ� ð24Þ

before computing the interpolation function. It should be noted that above modification to �f n
i is only used

for constructing the interpolation function (16) or (17). Thus, transport is still exactly conservative.

In PRM, once the cell interface value is determined, only (18)–(20), (23) and (24) need to be computed to

get the flux. The adjustment of the interface value to enforce the monotonicity is not required here. The

corresponding part in the PPM consists of (1.5), (1.10) and one of (1.12) in [4]. A direct comparison of

computational efficiency between PRM and PPM can be carried out by counting the numerical operations

of those parts where two schemes are different from each other. Table 1 shows the numbers of computer

operations required in the corresponding parts in both schemes. It is easy to see that PRM requires less
operation counts than PPM. However, we should also note that the operation of division is relatively

heavier compared with other arithmetic operations, so a comparison in terms of CPU time is dependent on

the hardware and compiler. The PRM should be faster on any architecture equipped with advanced

division pipelines.
Table 1

Operation counts of the different parts of PRM and PPM

Operation PRM PPM

¼, þ, �, �, ABS(x) 21 43

� 2 0

MAX(x) or min(x) 4 0

IF logic 0 3

Total 27 46
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The multi-dimensional computation of PRM scheme can be implemented as those applied to

the PPM scheme [2,7]. We have adopted the dimensional splitting to extend the scheme to multi-

dimensions. For a variable velocity field, the solution from a simple splitting can not be monotonic
even the velocity field is multi-dimensionally divergence free. Extra modifications [3,6,7] are required to

correct these splitting errors. The splitting correction suggested by Clappier [3] is used in our multi-

dimensional calculations.
4. Numerical tests

In order to evaluate the numerical results in a quantitative way, we use an l2 norm error ETOT as defined
in [10],

ETOT ¼ 1

N

XN
i¼1

ð�f n
i � f exact

i Þ2; ð25Þ

where N is the number of the sampled mesh cells.

It is easy to know that the total error can be further divided into the dissipation error and the dispersion

error,

ETOT ¼ EDISS þ EDISP; ð26Þ

with

EDISS ¼ ½rð�f nÞ � rðf exactÞ�2 þ ð��f n � �f exactÞ2

and

EDISP ¼ 2ð1� rÞrð�f nÞrðf exactÞ

being the dissipation error and the dispersion error respectively. In the above expressions, ��f
n
and rð�f nÞ

represent the mean and the standard deviation of �f n respectively, and r is the correlation coefficient between

the values of �f n and f exact on the mesh cells.

4.1. Comparison with PPM

We firstly examined the grid refinement convergence rate of the PRM scheme. Sine waves with wave
lengths of 20Dx and 40Dx were computed. A constant velocity u ¼ 1:0 was set throughout the computa-

tional domain. Fig. 3 displays the numerical results after 1000 steps with a Courant number 0.2. The results

of the PPM scheme are also included for comparison. For the long wave, the PRM produces quite similar

results to the PPM method. For the short wave, however, the PRM scheme gives better solution than PPM.

Numerical errors are calculated from the data sampled over 80 grid points and given in Table 2. In order

to evaluate the accuracy and convergence rates of both schemes, we include the numerical results for a long

wave of 80Dx as well. The PRM scheme produces less errors for all wave lengths compared to PPM. The

convergence rates of PRM and PPM are shown in Table 3. Higher than 2nd order convergence rates are
observed for both schemes.

The transport of a triangle wave given initially as

f 0ðxÞ ¼ 1� jxj
0:15

; jxj6 0:15;
0; others

�
ð27Þ
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Fig. 3. Sine waves of the wave lengths being 20 (top) and 40 (bottom) grid-spacings transported after 1000 step calculations with the

Courant number being 0.2. Displayed are the overall solutions (left) and the enlarged parts over half wave length (right).

Table 2

Grid refinement tests

Scheme ETOTð20DxÞ ETOTð40DxÞ ETOTð80DxÞ

PRM 5.36� 10�3 2.22� 10�4 7.06� 10�6

PPM 7.96� 10�3 3.22� 10�4 1.03� 10�5

Displayed are the errors defined by ETOT ¼ 1
N

PN
i¼1ð�f n

i � f exact
i Þ2.

Table 3

Convergence rates of different schemes

Scheme ETOTð20DxÞ
ETOTð40DxÞ

h i1=2
Order ETOTð40DxÞ

ETOTð80DxÞ

h i1=2
Order

PRM 4.91 2.30 5.61 2.49

PPM 4.97 2.31 5.59 2.48
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is computed to test numerical dispersion and shape preserving properties of the schemes. An equally spaced

grid with Dx ¼ 0:01 is used.

It is known that the numerical dispersion of high order schemes of flux form depends on the CFL
number. We conducted numerical experiments for PRM and PPM with the CFL numbers of 0.02, 0.5 and

0.98. For the same transport distance, the number of steps are 10,000, 400 and 204 correspondingly. The

numerical results of PPM and PRM are plotted in Fig. 4, and the deviations from the exact solution are

shown in Fig. 5. When Courant number is 0.5, both schemes give spatially symmetric errors, thus there are

not noticeable distortions to the symmetry of the initial profile. But for Courant number 0.02, PPM

produces quite different errors for up-wind side and down-wind side of the triangle, and a significant

distortion is observed on the down-wind side of the triangle from the results of PPM. The PRM, however,
 0
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Exact
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Exact

Fig. 4. A triangular wave transported by the PPM scheme (left) and PRM scheme (right) with the Courant number being 0.02, 0.5 and

0.98, respectively.
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Fig. 5. The errors by ð�f n
i � f exact

i Þ for the triangular wave transported by the PPM scheme (left) and PRM scheme (right) with Courant

number being 0.02, 0.5 and 0.98, respectively.



Table 4

Numerical errors of a triangular linear wave computed by the PPM scheme

CFL no./steps ETOT EDISS EDISS=ETOT (%) EDISP EDISP=ETOT (%)

0.50/400 2.75� 10�4 1.01� 10�6 0.37 2.74� 10�4 99.63

0.02/10000 5.06� 10�4 1.05� 10�6 <0.01 5.06� 10�4 >99.99

0.98/204 7.44� 10�5 8.79� 10�9 <0.01 7.44� 10�5 >99.99

The data were sampled over 70 grid cells centered by the peak of the triangle with the CFL numbers being 0.5, 0.02 and 0.98,

respectively.

Table 5

Same as Table 4, but computed by the PRM scheme

CFL no./steps ETOT EDISS EDISS=ETOT (%) EDISP EDISP=ETOT (%)

0.50/400 2.64� 10�4 1.90� 10�6 0.76 2.62� 10�4 99.24

0.02/10000 2.24� 10�4 7.36� 10�7 0.45 2.23� 10�4 99.55

0.98/204 6.17� 10�5 6.05� 10�9 <0.01 6.17� 10�5 >99.99
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preserves the symmetry much better. Tables 4 and 5 show the numerical errors for different Courant

numbers. In all cases the PRM scheme is more accurate than the PPM scheme in terms of the total nu-

merical errors and the dispersion errors. PPM appears less accurate in dispersion as the Courant number

departs from 0.5. It should be also noted that the PPM clips the triangular peak to a more significant extent,

which is also observed in the sine wave tests.

To examine the capability of capturing discontinuities, the transport of a square wave is computed. The

initial profile is defined as

f 0ðxÞ ¼ 1; jxj6 0:15;
0; others:

�
ð28Þ

The computed results after 1000 steps with Courant number being 0.2 are plotted in Fig. 6. PRM
produced almost the same numerical solution to the PPM and were able to bound the minimum values to
 0
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 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70

PPM
PRM
Exact

Fig. 6. Transport of a square wave with a constant velocity field.



Table 6

Square wave transportation problem

Scheme RFM RSM MAX MIN ETOT

PRM 1.0 0.937 1.0 Oð�Þ 1.12� 10�2

PPM 1.0 0.944 1.0 0.0 1.02� 10�2

MAX and MIN indicate the highest and the lowest values produced by the schemes. Other quantities are defined as

RFM ¼
R
�f ðtÞ=

R
�f ð0Þ and RSM ¼

R
�f 2ðtÞ=

R
�f 2ð0Þ. The data are sampled over 70 mesh cells.
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an order of �, the small positive used in (20). The conservations in the total mass and the total squared mass,

the maximum and the minimum of the numerical solutions, and the l2 errors are shown in Table 6. The

numerical manipulations to enforce the monotonicity in the PPM scheme always tends to clip a �peak� to a

�plateau�, and gives a better result to this particular test problem.

As the test of the 2D scheme, we solved the solid rotation test problems. The advection transport

equation in 2D was computed on a [0,1]� [0,1] square with a 100� 100 grid. A purely rotational velocity

field with period 1 is specified as

uðx; yÞ ¼ 2p y
�

� 1

2

�
; vðx; yÞ ¼ �2p x

�
� 1

2

�
:

Fig. 7 shows a cone after one revolution. The cone is initially centered at ð1
2
; 3
4
Þ with the base radius of

0.15 and the height of 1. The PRM gives a numerical solution competitive to the PPM with respect to shape
preserving. Another test is conducted by using the initial profile of the cut-cylinder of Zalesak [17]. Shown

in Fig. 8, the PRM again produced a numerical result among the best ones of this kind.

4.2. Smolarkiewicz’s deformational advection test

We also repeated the test suggested in Smolarkiewicz [8] and Staniforth et al. [9] to transport a cone with

a deformed flow field

uðx; yÞ ¼ 8p
25

sin
px
25

� �
sin

py
25

� �
; ð29Þ
vðx; yÞ ¼ 8p
25

cos
px
25

� �
cos

py
25

� �
: ð30Þ
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Fig. 7. Numerical solution after 1 revolution of the solid rotation test of a cone by PRM (left) and PPM (right).
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Fig. 8. Numerical solution after 1 revolution of the solid rotation test of a cut cylinder of Zalesak [17] by PRM (left) and PPM (right).
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Corresponding to Bott [1], the numerical results at T ¼ 19Dt, 38Dt, 57Dt and 75Dt with Dt ¼ 0:7 are

plotted in Fig. 9. Our results agree with the analytical solution presented in Staniforth et al. [9] in terms of

the overall shape and the phase of deformation. The symmetry of the solution is accurately reproduced.
Fig. 9. Numerical results of the deformational flow field test for short time integrations computed by PRM.



Fig. 10. Same as Fig. 9 but after 3768 steps.

F. Xiao, X. Peng / Journal of Computational Physics 198 (2004) 389–402 401
However, same as any other stable scheme, PRM smeared the structures of thin film due to the finite

resolution of computational mesh. Fig. 10 shows the computed result after 3768 steps with PRM scheme.

As pointed out by Staniforth et al. [9] and Smolarkiewicz [8], the un-resolvable structure will develop as the

time increases. But it is still meaningful to run a long time integration to see if the un-resolvable scales will

cause computational instability for a scheme that works well with resolvable structures. The PRM has not
encountered any computational instability even after a long integration time. The ratio of the second

moment after 3768 steps to its initial value,
P

ð�f 2Þ3768 steps=
P

ð�f 2Þinitial, is 0.299, which shows a dissipative

property. The main feature that the concentration tends to move around the vortex centers after a long time

integration was captured.
5. Conclusions

We have presented the PRM scheme as a conservative and oscillation-less advection scheme. The PRM

is algorithmically simple and easy to code. Our numerical experiments show that the PRM is a competitive

alternative to the PPM scheme with respect to numerical accuracy and computational efficiency. We can

expect more applications of the PRM scheme to a wide range of CFD simulations.
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